

D
S

14
. I

B
M

 W
at

so
n®

 a
nd

C

og
ni

ti
ve

 C
om

pu
ti

ng

D
S

In
tr

o:
 T

im
e

Se
rie

s
an

d
Si

m
pl

e
Li

ne
ar

 R
eg

re
ss

io
n

D
S

16
. D

ee
p

Le
ar

ni
ng

C
on

vo
lu

tio
na

l a
nd

 R
ec

ur
re

nt

N
eu

ra
l N

et
w

or
ks

; R
ei

nf
or

ce
m

en
t

Le
ar

ni
ng

 in
 th

e
Ex

er
ci

se
s

C
S

an
d

D
S

O
th

er
 T

op
ic

s
B

lo
g

C
S

11
. C

om
pu

te
r

Sc
ie

nc
e

T
hi

nk
in

g:
 R

ec
ur

si
on

,
Se

ar
ch

in
g,

 S
or

ti
ng

 a
nd

 B
ig

 O

D
S

15
. M

ac
hi

ne
 L

ea
rn

in
g:

C

la
ss

if
ic

at
io

n,
 R

eg
re

ss
io

n
an

d
C

lu
st

er
in

g

C
S

10
. O

bj
ec

t-
O

ri
en

te
d

Pr
og

ra
m

m
in

g

D
S

13
. D

at
a

M
in

in
g

T
w

it
te

r®
Se

nt
im

en
t A

na
ly

si
s,

 JS
O

N
 a

nd

W
eb

 S
er

vi
ce

s

C
S

1.
 I

nt
ro

du
ct

io
n

to

C
om

pu
te

rs
 a

nd
 P

yt
ho

n
D

S
12

. N
at

ur
al

 L
an

gu
ag

e
Pr

oc
es

si
ng

 (
N

LP
)

W
eb

 S
cr

ap
in

g
in

 th
e

Ex
er

ci
se

s

D
S

17
. B

ig
 D

at
a:

 H
ad

oo
p®

,
Sp

ar
k™

, N
oS

Q
L

an
d

Io
T

C
S

2.
 I

nt
ro

du
ct

io
n

to

Py
th

on
 P

ro
gr

am
m

in
g

D
S

In
tr

o:
 B

as
ic

 D
es

cr
ip

tiv
e

St
at

s

C
S

3.
 C

on
tr

ol
 S

ta
te

m
en

ts
 a

nd

Pr
og

ra
m

 D
ev

el
op

m
en

t

D
S

In
tro

: M
ea

su
re

s
of

 C
en

tra
l

Te
nd

en
cy

—
M

ea
n,

 M
ed

ia
n,

 M
od

e

C
S

4.
 F

un
ct

io
ns

D
S

In
tr

o:
 B

as
ic

 S
ta

tis
tic

s—

M
ea

su
re

s
of

 D
is

pe
rs

io
n

C
S

5.
 L

is
ts

 a
nd

 T
up

le
s

D
S

In
tr

o:
 S

im
ul

at
io

n
an

d
St

at
ic

V
is

ua
liz

at
io

n

C
S

7.
 A

rr
ay

-O
ri

en
te

d
Pr

og
ra

m
m

in
g

w
it

h
N

um
Py

H
ig

h-
Pe

rfo
rm

an
ce

 N
um

Py
 A

rra
ys

D
S

In
tr

o:

Pa
nd

as
 S

er
ie

s
an

d
D

at
aF

ra
m

es

C
S

9.
 F

ile
s

an
d

Ex
ce

pt
io

ns

D
S

In
tr

o:
 L

oa
di

ng
 D

at
as

et
s

fro
m

C

SV
 F

ile
s

in
to

 P
an

da
s

D
at

aF
ra

m
es

C
S

8.
 S

tr
in

gs
: A

 D
ee

pe
r

Lo
ok

In
cl

ud
es

 R
eg

ul
ar

 E
xp

re
ss

io
ns

D
S

In
tr

o:
 P

an
da

s,

Re
gu

la
r E

xp
re

ss
io

ns
 a

nd

D
at

a
W

ra
ng

lin
g

D
S

In
tr

o:
 A

I—
at

 th
e

In
te

rs
ec

tio
n

of
 C

S
an

d
D

S

C
S:

 P
yt

ho
n

Fu
nd

am
en

ta
ls

 Q
ui

ck
st

ar
t

C
S:

 P
yt

ho
n

D
at

a
St

ru
ct

ur
es

,
St

ri
ng

s
an

d
Fi

le
s

C
S:

 P
yt

ho
n

H
ig

h-
En

d
T

op
ic

s
A

I,
 B

ig
 D

at
a

an
d

C
lo

ud

C
as

e
St

ud
ie

s

PA
R

T
 1

PA
R

T
 2

PA
R

T
 3

PA
R

T
 4

1.
Ch

ap
te

rs
 1

–1
1

m
ar

ke
d

CS
 a

re
tra

di
tio

na
l P

yt
ho

n
pr

og
ra

m
m

in
g

an
d

co
m

pu
te

r-s
ci

en
ce

 to
pi

cs
.

2.
Li

gh
t-t

in
te

d
bo

tto
m

 b
ox

es
 in

Ch
ap

te
rs

 1
–1

0
m

ar
ke

d
D

S
In

tro
ar

e
br

ie
f,

fri
en

dl
y

in
tro

du
ct

io
ns

to
 d

at
a-

sc
ie

nc
e

to
pi

cs
.

3.
Ch

ap
te

rs
 1

2–
17

 m
ar

ke
d

D
S

ar
e

Py
th

on
-b

as
ed

, A
I,

bi
g

da
ta

 a
nd

cl
ou

d
ch

ap
te

rs
, e

ac
h

co
nt

ai
ni

ng
se

ve
ra

l f
ul

l-i
m

pl
em

en
ta

tio
n

st
ud

ie
s.

4.
Fu

nc
tio

na
l-s

ty
le

 p
ro

gr
am

m
in

g
is

 in
te

gr
at

ed
 b

oo
k

w
id

e.

5.
Pr

ef
ac

e
ex

pl
ai

ns
 th

e
de

pe
nd

en
-

ci
es

 a
m

on
g

th
e

ch
ap

te
rs

.
6.

V
is

ua
liz

at
io

ns
 th

ro
ug

ho
ut

.

7.
CS

 c
ou

rs
es

 m
ay

 c
ov

er
 m

or
e

of
th

e
Py

th
on

 c
ha

pt
er

s
an

d
le

ss
of

 th
e

D
S

co
nt

en
t.

V
ic

e
ve

rs
a

fo
r

D
at

a
Sc

ie
nc

e
co

ur
se

s.
8.

W
e

pu
t C

ha
pt

er
 5

 in
 P

ar
t 1

. I
t’s

al
so

 a
 n

at
ur

al
 fi

t w
ith

 P
ar

t 2
.

Q
ue

st
io

ns
? d

e
i
t
e
l
@
d
e
i
t
e
l
.
c
o
m

C
S

6.
 D

ic
ti

on
ar

ie
s

an
d

Se
ts

D
S

In
tr

o:
 S

im
ul

at
io

n
an

d
D

yn
am

ic
 V

is
ua

liz
at

io
n

In
tr

o
to

 P
yt

ho
n®

 fo
r

C
om

pu
te

r
Sc

ie
nc

e
an

d
D

at
a

Sc
ie

nc
e

Le
ar

ni
ng

 to
 P

ro
gr

am
 w

ith
 A

I,
Bi

g
D

at
a

an
d

th
e

C
lo

ud
by

 P
au

l D
ei

te
l &

 H
ar

ve
y

D
ei

te
l

Deitel® Ser ies Page
How To Program Series
Android™ How to Program, 3/E
C++ How to Program, 10/E
C How to Program, 8/E
Java™ How to Program, Early Objects Version, 11/E
Java™ How to Program, Late Objects Version, 11/E
Internet & World Wide Web How to Program, 5/E
Visual Basic® 2012 How to Program, 6/E
Visual C#® How to Program, 6/E

REVEL™ Interactive Multimedia
REVEL™ for Deitel Java™

VitalSource Web Books
http://bit.ly/DeitelOnVitalSource

Android™ How to Program, 2/E and 3/E
C++ How to Program, 9/E and 10/E
Java™ How to Program, 10/E and 11/E
Simply C++: An App-Driven Tutorial Approach
Simply Visual Basic® 2010: An App-Driven

Approach, 4/E
Visual Basic® 2012 How to Program, 6/E
Visual C#® How to Program, 6/E
Visual C#® 2012 How to Program, 5/E

Deitel® Developer Series
Android™ 6 for Programmers: An App-Driven

Approach, 3/E
C for Programmers with an Introduction to C11
C++11 for Programmers
C# 6 for Programmers
Java™ for Programmers, 4/E
JavaScript for Programmers
Swift™ for Programmers

LiveLessons Video Training
http://deitel.com/books/LiveLessons/

Android™ 6 App Development Fundamentals, 3/E
C++ Fundamentals
Java SE 8™ Fundamentals, 2/E
Java SE 9™ Fundamentals, 3/E
C# 6 Fundamentals
C# 2012 Fundamentals
JavaScript Fundamentals
Swift™ Fundamentals

To receive updates on Deitel publications, Resource Centers, training courses, partner offers and
more, please join the Deitel communities on

• Facebook®—http://facebook.com/DeitelFan

• Twitter®—@deitel

• LinkedIn®—http://linkedin.com/company/deitel-&-associates

• YouTube™—http://youtube.com/DeitelTV

• Instagram®—http://instagram.com/DeitelFan

and register for the free Deitel® Buzz Online e-mail newsletter at:
 http://www.deitel.com/newsletter/subscribe.html

To communicate with the authors, send e-mail to:
 deitel@deitel.com

For information on programming-languages corporate training seminars offered by Deitel & Asso-
ciates, Inc. worldwide, write to deitel@deitel.com or visit:
 http://www.deitel.com/training/

For continuing updates on Pearson/Deitel publications visit:
http://www.deitel.com
http://www.pearson.com/deitel

Senior Vice President, Courseware Portfolio Management: Marcia J. Horton
Director, Portfolio Management: Engineering, Computer Science & Global Editions: Julian Partridge
Executive Higher Ed Portfolio Management: Tracy Johnson (Dunkelberger)
Portfolio Management Assistant: Meghan Jacoby
Managing Content Producer: Scott Disanno
Content Producer: Carole Snyder
Rights and Permissions Manager: Ben Ferrini
Inventory Manager: Bruce Boundy
Product Marketing Manager: Yvonne Vannatta
Field Marketing Manager: Demetrius Hall
Marketing Assistant: Jon Bryant
Cover Designer: Paul Deitel, Harvey Deitel, Chuti Prasertsith
Cover Art: ©Denel/Shutterstock

Copyright ©2020 Pearson Education, Inc. All rights reserved. Manufactured in the United States of America. This
publication is protected by copyright, and permission should be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, pho-
tocopying, recording, or likewise. For information regarding permissions, request forms and the appropriate contacts
within the Pearson Education Global Rights & Permissions department, please visit http://www.pearsoned.com/per-
missions.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been
printed in initial caps or all caps.

The authors and publisher of this book have used their best efforts in preparing this book. These efforts include the
development, research, and testing of the theories and programs to determine their effectiveness. The authors and pub-
lisher make no warranty of any kind, expressed or implied, with regard to these programs or to the documentation
contained in this book. The authors and publisher shall not be liable in any event for incidental or consequential dam-
ages in connection with, or arising out of, the furnishing, performance, or use of these programs.

Deitel and the double-thumbs-up bug are registered trademarks of Deitel and Associates, Inc.

Library of Congress Cataloging-in-Publication Data
On file

ISBN-10: 0-13-540467-3
ISBN-13: 978-0-13-540467-6

In Memory of Marvin Minsky,
a founding father of
artificial intelligence

It was a privilege to be your student in two
artificial-intelligence graduate courses at M.I.T.
You inspired your students to think beyond limits.

Harvey Deitel

Preface xix

Before You Begin xlv

1 Introduction to Computers and Python 1
1.1 Introduction 2
1.2 Hardware and Software 3

1.2.1 Moore’s Law 4
1.2.2 Computer Organization 4

1.3 Data Hierarchy 6
1.4 Machine Languages, Assembly Languages and High-Level Languages 9
1.5 Introduction to Object Technology 10
1.6 Operating Systems 13
1.7 Python 16
1.8 It’s the Libraries! 18

1.8.1 Python Standard Library 18
1.8.2 Data-Science Libraries 18

1.9 Other Popular Programming Languages 20
1.10 Test-Drive: Using IPython and Jupyter Notebooks 21

1.10.1 Using IPython Interactive Mode as a Calculator 21
1.10.2 Executing a Python Program Using the IPython Interpreter 23
1.10.3 Writing and Executing Code in a Jupyter Notebook 24

1.11 Internet and World Wide Web 29
1.11.1 Internet: A Network of Networks 29
1.11.2 World Wide Web: Making the Internet User-Friendly 30
1.11.3 The Cloud 30
1.11.4 Internet of Things 31

1.12 Software Technologies 32
1.13 How Big Is Big Data? 33

1.13.1 Big Data Analytics 38
1.13.2 Data Science and Big Data Are Making a Difference: Use Cases 39

1.14 Intro to Data Science: Case Study—A Big-Data Mobile Application 40

2 Introduction to Python Programming 49
2.1 Introduction 50
2.2 Variables and Assignment Statements 50

Contents

viii Contents

2.3 Arithmetic 52
2.4 Function print and an Intro to Single- and Double-Quoted Strings 56
2.5 Triple-Quoted Strings 58
2.6 Getting Input from the User 59
2.7 Decision Making: The if Statement and Comparison Operators 61
2.8 Objects and Dynamic Typing 66
2.9 Intro to Data Science: Basic Descriptive Statistics 68
2.10 Wrap-Up 70

3 Control Statements and Program Development 73
3.1 Introduction 74
3.2 Algorithms 74
3.3 Pseudocode 75
3.4 Control Statements 75
3.5 if Statement 78
3.6 if…else and if…elif…else Statements 80
3.7 while Statement 85
3.8 for Statement 86

3.8.1 Iterables, Lists and Iterators 88
3.8.2 Built-In range Function 88

3.9 Augmented Assignments 89
3.10 Program Development: Sequence-Controlled Repetition 90

3.10.1 Requirements Statement 90
3.10.2 Pseudocode for the Algorithm 90
3.10.3 Coding the Algorithm in Python 91
3.10.4 Introduction to Formatted Strings 92

3.11 Program Development: Sentinel-Controlled Repetition 93
3.12 Program Development: Nested Control Statements 97
3.13 Built-In Function range: A Deeper Look 101
3.14 Using Type Decimal for Monetary Amounts 102
3.15 break and continue Statements 105
3.16 Boolean Operators and, or and not 106
3.17 Intro to Data Science: Measures of Central Tendency—

Mean, Median and Mode 109
3.18 Wrap-Up 111

4 Functions 119
4.1 Introduction 120
4.2 Defining Functions 120
4.3 Functions with Multiple Parameters 123
4.4 Random-Number Generation 125
4.5 Case Study: A Game of Chance 128
4.6 Python Standard Library 131
4.7 math Module Functions 132
4.8 Using IPython Tab Completion for Discovery 133

Contents ix

4.9 Default Parameter Values 135
4.10 Keyword Arguments 136
4.11 Arbitrary Argument Lists 136
4.12 Methods: Functions That Belong to Objects 138
4.13 Scope Rules 138
4.14 import: A Deeper Look 140
4.15 Passing Arguments to Functions: A Deeper Look 142
4.16 Function-Call Stack 145
4.17 Functional-Style Programming 146
4.18 Intro to Data Science: Measures of Dispersion 148
4.19 Wrap-Up 150

5 Sequences: Lists and Tuples 155
5.1 Introduction 156
5.2 Lists 156
5.3 Tuples 161
5.4 Unpacking Sequences 163
5.5 Sequence Slicing 166
5.6 del Statement 169
5.7 Passing Lists to Functions 171
5.8 Sorting Lists 172
5.9 Searching Sequences 174
5.10 Other List Methods 176
5.11 Simulating Stacks with Lists 178
5.12 List Comprehensions 179
5.13 Generator Expressions 181
5.14 Filter, Map and Reduce 182
5.15 Other Sequence Processing Functions 185
5.16 Two-Dimensional Lists 187
5.17 Intro to Data Science: Simulation and Static Visualizations 191

5.17.1 Sample Graphs for 600, 60,000 and 6,000,000 Die Rolls 191
5.17.2 Visualizing Die-Roll Frequencies and Percentages 193

5.18 Wrap-Up 199

6 Dictionaries and Sets 209
6.1 Introduction 210
6.2 Dictionaries 210

6.2.1 Creating a Dictionary 210
6.2.2 Iterating through a Dictionary 212
6.2.3 Basic Dictionary Operations 212
6.2.4 Dictionary Methods keys and values 214
6.2.5 Dictionary Comparisons 216
6.2.6 Example: Dictionary of Student Grades 217
6.2.7 Example: Word Counts 218

x Contents

6.2.8 Dictionary Method update 220
6.2.9 Dictionary Comprehensions 220

6.3 Sets 221
6.3.1 Comparing Sets 223
6.3.2 Mathematical Set Operations 225
6.3.3 Mutable Set Operators and Methods 226
6.3.4 Set Comprehensions 228

6.4 Intro to Data Science: Dynamic Visualizations 228
6.4.1 How Dynamic Visualization Works 228
6.4.2 Implementing a Dynamic Visualization 231

6.5 Wrap-Up 234

7 Array-Oriented Programming with NumPy 239
7.1 Introduction 240
7.2 Creating arrays from Existing Data 241
7.3 array Attributes 242
7.4 Filling arrays with Specific Values 244
7.5 Creating arrays from Ranges 244
7.6 List vs. array Performance: Introducing %timeit 246
7.7 array Operators 248
7.8 NumPy Calculation Methods 250
7.9 Universal Functions 252
7.10 Indexing and Slicing 254
7.11 Views: Shallow Copies 256
7.12 Deep Copies 258
7.13 Reshaping and Transposing 259
7.14 Intro to Data Science: pandas Series and DataFrames 262

7.14.1 pandas Series 262
7.14.2 DataFrames 267

7.15 Wrap-Up 275

8 Strings: A Deeper Look 283
8.1 Introduction 284
8.2 Formatting Strings 285

8.2.1 Presentation Types 285
8.2.2 Field Widths and Alignment 286
8.2.3 Numeric Formatting 287
8.2.4 String’s format Method 288

8.3 Concatenating and Repeating Strings 289
8.4 Stripping Whitespace from Strings 290
8.5 Changing Character Case 291
8.6 Comparison Operators for Strings 292
8.7 Searching for Substrings 292
8.8 Replacing Substrings 294

Contents xi

8.9 Splitting and Joining Strings 294
8.10 Characters and Character-Testing Methods 297
8.11 Raw Strings 298
8.12 Introduction to Regular Expressions 299

8.12.1 re Module and Function fullmatch 300
8.12.2 Replacing Substrings and Splitting Strings 303
8.12.3 Other Search Functions; Accessing Matches 304

8.13 Intro to Data Science: Pandas, Regular Expressions and Data Munging 307
8.14 Wrap-Up 312

9 Files and Exceptions 319
9.1 Introduction 320
9.2 Files 321
9.3 Text-File Processing 321

9.3.1 Writing to a Text File: Introducing the with Statement 322
9.3.2 Reading Data from a Text File 323

9.4 Updating Text Files 325
9.5 Serialization with JSON 327
9.6 Focus on Security: pickle Serialization and Deserialization 330
9.7 Additional Notes Regarding Files 330
9.8 Handling Exceptions 331

9.8.1 Division by Zero and Invalid Input 332
9.8.2 try Statements 332
9.8.3 Catching Multiple Exceptions in One except Clause 335
9.8.4 What Exceptions Does a Function or Method Raise? 336
9.8.5 What Code Should Be Placed in a try Suite? 336

9.9 finally Clause 336
9.10 Explicitly Raising an Exception 339
9.11 (Optional) Stack Unwinding and Tracebacks 339
9.12 Intro to Data Science: Working with CSV Files 342

9.12.1 Python Standard Library Module csv 342
9.12.2 Reading CSV Files into Pandas DataFrames 344
9.12.3 Reading the Titanic Disaster Dataset 346
9.12.4 Simple Data Analysis with the Titanic Disaster Dataset 347
9.12.5 Passenger Age Histogram 348

9.13 Wrap-Up 349

10 Object-Oriented Programming 355
10.1 Introduction 356
10.2 Custom Class Account 358

10.2.1 Test-Driving Class Account 358
10.2.2 Account Class Definition 360
10.2.3 Composition: Object References as Members of Classes 361

10.3 Controlling Access to Attributes 363

xii Contents

10.4 Properties for Data Access 364
10.4.1 Test-Driving Class Time 364
10.4.2 Class Time Definition 366
10.4.3 Class Time Definition Design Notes 370

10.5 Simulating “Private” Attributes 371
10.6 Case Study: Card Shuffling and Dealing Simulation 373

10.6.1 Test-Driving Classes Card and DeckOfCards 373
10.6.2 Class Card—Introducing Class Attributes 375
10.6.3 Class DeckOfCards 377
10.6.4 Displaying Card Images with Matplotlib 378

10.7 Inheritance: Base Classes and Subclasses 382
10.8 Building an Inheritance Hierarchy; Introducing Polymorphism 384

10.8.1 Base Class CommissionEmployee 384
10.8.2 Subclass SalariedCommissionEmployee 387
10.8.3 Processing CommissionEmployees and

SalariedCommissionEmployees Polymorphically 391
10.8.4 A Note About Object-Based and Object-Oriented Programming 391

10.9 Duck Typing and Polymorphism 392
10.10 Operator Overloading 393

10.10.1 Test-Driving Class Complex 394
10.10.2 Class Complex Definition 395

10.11 Exception Class Hierarchy and Custom Exceptions 397
10.12 Named Tuples 399
10.13 A Brief Intro to Python 3.7’s New Data Classes 400

10.13.1 Creating a Card Data Class 401
10.13.2 Using the Card Data Class 403
10.13.3 Data Class Advantages over Named Tuples 405
10.13.4 Data Class Advantages over Traditional Classes 406

10.14 Unit Testing with Docstrings and doctest 406
10.15 Namespaces and Scopes 411
10.16 Intro to Data Science: Time Series and Simple Linear Regression 414
10.17 Wrap-Up 423

11 Computer Science Thinking: Recursion,
Searching, Sorting and Big O 431

11.1 Introduction 432
11.2 Factorials 433
11.3 Recursive Factorial Example 433
11.4 Recursive Fibonacci Series Example 436
11.5 Recursion vs. Iteration 439
11.6 Searching and Sorting 440
11.7 Linear Search 440
11.8 Efficiency of Algorithms: Big O 442
11.9 Binary Search 444

11.9.1 Binary Search Implementation 445

Contents xiii

11.9.2 Big O of the Binary Search 447
11.10 Sorting Algorithms 448
11.11 Selection Sort 448

11.11.1 Selection Sort Implementation 449
11.11.2 Utility Function print_pass 450
11.11.3 Big O of the Selection Sort 451

11.12 Insertion Sort 451
11.12.1 Insertion Sort Implementation 452
11.12.2 Big O of the Insertion Sort 453

11.13 Merge Sort 454
11.13.1 Merge Sort Implementation 454
11.13.2 Big O of the Merge Sort 459

11.14 Big O Summary for This Chapter’s Searching and Sorting Algorithms 459
11.15 Visualizing Algorithms 460

11.15.1 Generator Functions 462
11.15.2 Implementing the Selection Sort Animation 463

11.16 Wrap-Up 468

12 Natural Language Processing (NLP) 477
12.1 Introduction 478
12.2 TextBlob 479

12.2.1 Create a TextBlob 481
12.2.2 Tokenizing Text into Sentences and Words 482
12.2.3 Parts-of-Speech Tagging 482
12.2.4 Extracting Noun Phrases 483
12.2.5 Sentiment Analysis with TextBlob’s Default Sentiment Analyzer 484
12.2.6 Sentiment Analysis with the NaiveBayesAnalyzer 486
12.2.7 Language Detection and Translation 487
12.2.8 Inflection: Pluralization and Singularization 489
12.2.9 Spell Checking and Correction 489
12.2.10 Normalization: Stemming and Lemmatization 490
12.2.11 Word Frequencies 491
12.2.12 Getting Definitions, Synonyms and Antonyms from WordNet 492
12.2.13 Deleting Stop Words 494
12.2.14 n-grams 496

12.3 Visualizing Word Frequencies with Bar Charts and Word Clouds 497
12.3.1 Visualizing Word Frequencies with Pandas 497
12.3.2 Visualizing Word Frequencies with Word Clouds 500

12.4 Readability Assessment with Textatistic 503
12.5 Named Entity Recognition with spaCy 505
12.6 Similarity Detection with spaCy 507
12.7 Other NLP Libraries and Tools 509
12.8 Machine Learning and Deep Learning Natural Language Applications 509
12.9 Natural Language Datasets 510
12.10 Wrap-Up 510

xiv Contents

13 Data Mining Twitter 515
13.1 Introduction 516
13.2 Overview of the Twitter APIs 518
13.3 Creating a Twitter Account 519
13.4 Getting Twitter Credentials—Creating an App 520
13.5 What’s in a Tweet? 521
13.6 Tweepy 525
13.7 Authenticating with Twitter Via Tweepy 525
13.8 Getting Information About a Twitter Account 527
13.9 Introduction to Tweepy Cursors: Getting an Account’s

Followers and Friends 529
13.9.1 Determining an Account’s Followers 529
13.9.2 Determining Whom an Account Follows 532
13.9.3 Getting a User’s Recent Tweets 532

13.10 Searching Recent Tweets 534
13.11 Spotting Trends: Twitter Trends API 536

13.11.1 Places with Trending Topics 536
13.11.2 Getting a List of Trending Topics 537
13.11.3 Create a Word Cloud from Trending Topics 539

13.12 Cleaning/Preprocessing Tweets for Analysis 541
13.13 Twitter Streaming API 542

13.13.1 Creating a Subclass of StreamListener 543
13.13.2 Initiating Stream Processing 545

13.14 Tweet Sentiment Analysis 547
13.15 Geocoding and Mapping 551

13.15.1 Getting and Mapping the Tweets 552
13.15.2 Utility Functions in tweetutilities.py 556
13.15.3 Class LocationListener 558

13.16 Ways to Store Tweets 559
13.17 Twitter and Time Series 560
13.18 Wrap-Up 560

14 IBM Watson and Cognitive Computing 565
14.1 Introduction: IBM Watson and Cognitive Computing 566
14.2 IBM Cloud Account and Cloud Console 568
14.3 Watson Services 568
14.4 Additional Services and Tools 572
14.5 Watson Developer Cloud Python SDK 573
14.6 Case Study: Traveler’s Companion Translation App 574

14.6.1 Before You Run the App 575
14.6.2 Test-Driving the App 576
14.6.3 SimpleLanguageTranslator.py Script Walkthrough 577

14.7 Watson Resources 587
14.8 Wrap-Up 589

Contents xv

15 Machine Learning: Classification, Regression
and Clustering 593

15.1 Introduction to Machine Learning 594
15.1.1 Scikit-Learn 595
15.1.2 Types of Machine Learning 596
15.1.3 Datasets Bundled with Scikit-Learn 598
15.1.4 Steps in a Typical Data Science Study 599

15.2 Case Study: Classification with k-Nearest Neighbors and the
Digits Dataset, Part 1 599
15.2.1 k-Nearest Neighbors Algorithm 601
15.2.2 Loading the Dataset 602
15.2.3 Visualizing the Data 606
15.2.4 Splitting the Data for Training and Testing 608
15.2.5 Creating the Model 609
15.2.6 Training the Model 610
15.2.7 Predicting Digit Classes 610

15.3 Case Study: Classification with k-Nearest Neighbors and the
Digits Dataset, Part 2 612
15.3.1 Metrics for Model Accuracy 612
15.3.2 K-Fold Cross-Validation 616
15.3.3 Running Multiple Models to Find the Best One 617
15.3.4 Hyperparameter Tuning 619

15.4 Case Study: Time Series and Simple Linear Regression 620
15.5 Case Study: Multiple Linear Regression with the California

Housing Dataset 625
15.5.1 Loading the Dataset 626
15.5.2 Exploring the Data with Pandas 628
15.5.3 Visualizing the Features 630
15.5.4 Splitting the Data for Training and Testing 634
15.5.5 Training the Model 634
15.5.6 Testing the Model 635
15.5.7 Visualizing the Expected vs. Predicted Prices 636
15.5.8 Regression Model Metrics 637
15.5.9 Choosing the Best Model 638

15.6 Case Study: Unsupervised Machine Learning, Part 1—
Dimensionality Reduction 639

15.7 Case Study: Unsupervised Machine Learning, Part 2—
k-Means Clustering 642
15.7.1 Loading the Iris Dataset 644
15.7.2 Exploring the Iris Dataset: Descriptive Statistics with Pandas 646
15.7.3 Visualizing the Dataset with a Seaborn pairplot 647
15.7.4 Using a KMeans Estimator 650
15.7.5 Dimensionality Reduction with Principal Component Analysis 652
15.7.6 Choosing the Best Clustering Estimator 655

15.8 Wrap-Up 656

xvi Contents

16 Deep Learning 665
16.1 Introduction 666

16.1.1 Deep Learning Applications 668
16.1.2 Deep Learning Demos 669
16.1.3 Keras Resources 669

16.2 Keras Built-In Datasets 669
16.3 Custom Anaconda Environments 670
16.4 Neural Networks 672
16.5 Tensors 674
16.6 Convolutional Neural Networks for Vision; Multi-Classification

with the MNIST Dataset 676
16.6.1 Loading the MNIST Dataset 677
16.6.2 Data Exploration 678
16.6.3 Data Preparation 680
16.6.4 Creating the Neural Network 682
16.6.5 Training and Evaluating the Model 691
16.6.6 Saving and Loading a Model 696

16.7 Visualizing Neural Network Training with TensorBoard 697
16.8 ConvnetJS: Browser-Based Deep-Learning Training and Visualization 700
16.9 Recurrent Neural Networks for Sequences; Sentiment Analysis

with the IMDb Dataset 701
16.9.1 Loading the IMDb Movie Reviews Dataset 702
16.9.2 Data Exploration 703
16.9.3 Data Preparation 705
16.9.4 Creating the Neural Network 706
16.9.5 Training and Evaluating the Model 709

16.10 Tuning Deep Learning Models 710
16.11 Convnet Models Pretrained on ImageNet 711
16.12 Reinforcement Learning 712

16.12.1 Deep Q-Learning 713
16.12.2 OpenAI Gym 713

16.13 Wrap-Up 714

17 Big Data: Hadoop, Spark, NoSQL and IoT 723
17.1 Introduction 724
17.2 Relational Databases and Structured Query Language (SQL) 728

17.2.1 A books Database 730
17.2.2 SELECT Queries 734
17.2.3 WHERE Clause 734
17.2.4 ORDER BY Clause 736
17.2.5 Merging Data from Multiple Tables: INNER JOIN 737
17.2.6 INSERT INTO Statement 738
17.2.7 UPDATE Statement 739
17.2.8 DELETE FROM Statement 739

Contents xvii

17.3 NoSQL and NewSQL Big-Data Databases: A Brief Tour 741
17.3.1 NoSQL Key–Value Databases 741
17.3.2 NoSQL Document Databases 742
17.3.3 NoSQL Columnar Databases 742
17.3.4 NoSQL Graph Databases 743
17.3.5 NewSQL Databases 743

17.4 Case Study: A MongoDB JSON Document Database 744
17.4.1 Creating the MongoDB Atlas Cluster 745
17.4.2 Streaming Tweets into MongoDB 746

17.5 Hadoop 755
17.5.1 Hadoop Overview 755
17.5.2 Summarizing Word Lengths in Romeo and Juliet via MapReduce 758
17.5.3 Creating an Apache Hadoop Cluster in Microsoft

Azure HDInsight 758
17.5.4 Hadoop Streaming 760
17.5.5 Implementing the Mapper 760
17.5.6 Implementing the Reducer 761
17.5.7 Preparing to Run the MapReduce Example 762
17.5.8 Running the MapReduce Job 763

17.6 Spark 766
17.6.1 Spark Overview 766
17.6.2 Docker and the Jupyter Docker Stacks 767
17.6.3 Word Count with Spark 770
17.6.4 Spark Word Count on Microsoft Azure 773

17.7 Spark Streaming: Counting Twitter Hashtags Using the
pyspark-notebook Docker Stack 777
17.7.1 Streaming Tweets to a Socket 777
17.7.2 Summarizing Tweet Hashtags; Introducing Spark SQL 780

17.8 Internet of Things and Dashboards 786
17.8.1 Publish and Subscribe 788
17.8.2 Visualizing a PubNub Sample Live Stream with a Freeboard

Dashboard 788
17.8.3 Simulating an Internet-Connected Thermostat in Python 790
17.8.4 Creating the Dashboard with Freeboard.io 792
17.8.5 Creating a Python PubNub Subscriber 794

17.9 Wrap-Up 798

Index 805

“There’s gold in them thar hills!”1

For many decades, some powerful trends have been in place. Computer hardware has rap-
idly been getting faster, cheaper and smaller. Internet bandwidth (that is, its information
carrying capacity) has rapidly been getting larger and cheaper. And quality computer soft-
ware has become ever more abundant and essentially free or nearly free through the “open
source” movement. Soon, the “Internet of Things” will connect tens of billions of devices
of every imaginable type. These will generate enormous volumes of data at rapidly increas-
ing speeds and quantities.

Not so many years ago, if people had told us that we’d write a college-level introduc-
tory programming textbook with words like “Big Data” and “Cloud” in the title and a
graphic of a multicolored elephant (emblematic of “big”) on the cover, our reaction might
have been, “Huh?” And, if they’d told us we’d include AI (for artificial intelligence) in the
title, we might have said, “Really? Isn’t that pretty advanced stuff for novice programmers?”

If people had said, we’d include “Data Science” in the title, we might have responded,
“Isn’t data already included in the domain of ‘Computer Science’? Why would we need a
separate academic discipline for it?” Well, in programming today, the latest innovations
are “all about the data”—data science, data analytics, big data, relational databases (SQL),
and NoSQL and NewSQL databases.

So, here we are! Welcome to Intro to Python for Computer Science and Data Science:
Learning to Program with AI, Big Data and the Cloud.

In this book, you’ll learn hands-on with today’s most compelling, leading-edge com-
puting technologies—and, as you’ll see, with an easily tunable mix of computer science
and data science appropriate for introductory courses in those and related disciplines. And,
you’ll program in Python—one of the world’s most popular languages and the fastest
growing among them. In this Preface, we present the “soul of the book.”

Professional programmers often quickly discover that they like Python. They appre-
ciate its expressive power, readability, conciseness and interactivity. They like the world of
open-source software development that’s generating an ever-growing base of reusable soft-
ware for an enormous range of application areas.

Whether you’re an instructor, a novice student or an experienced professional pro-
grammer, this book has much to offer you. Python is an excellent first programming lan-
guage for novices and is equally appropriate for developing industrial-strength applications.
For the novice, the early chapters establish a solid programming foundation.

We hope you’ll find Intro to Python for Computer Science and Data Science educational,
entertaining and challenging. It has been a joy to work on this project.

1. Source unknown, frequently misattributed to Mark Twain.

Preface

xx Preface

Python for Computer Science and Data Science Education
Many top U.S. universities have switched to Python as their language of choice for teach-
ing introductory computer science, with “eight of the top 10 CS departments (80%), and
27 of the top 39 (69%)” using Python.2 It’s now particularly popular for educational and
scientific computing,3 and it recently surpassed R as the most popular data science pro-
gramming language.4,5,6

Modular Architecture
We anticipate that the computer science undergraduate curriculum will evolve to include
a data science component—this book is designed to facilitate that and to meet the needs
of introductory data science courses with a Python programming component.

The book’s modular architecture (please see the Table of Contents graphic on the
book’s first page) helps us meet the diverse needs of computer science, data science and
related audiences. Instructors can adapt it conveniently to a wide range of courses offered
to students drawn from many majors.

Chapters 1–11 cover traditional introductory computer science programming topics.
Chapters 1–10 each include an optional brief Intro to Data Science section introducing
artificial intelligence, basic descriptive statistics, measures of central tendency and disper-
sion, simulation, static and dynamic visualization, working with CSV files, pandas for data
exploration and data wrangling, time series and simple linear regression. These help you
prepare for the data science, AI, big data and cloud case studies in Chapters 12–17, which
present opportunities for you to use real-world datasets in complete case studies.

After covering Python Chapters 1–5 and a few key parts of Chapters 6–7, you’ll be
able to handle significant portions of the data science, AI and big data case studies in
Chapters 12–17, which are appropriate for all contemporary programming courses:

• Computer science courses will likely work through more of Chapters 1–11 and
fewer of the Intro to Data Science sections in Chapters 1–10. CS instructors will
want to cover some or all of the case-study Chapters 12–17.

• Data science courses will likely work through fewer of Chapters 1–11, most or all
of the Intro to Data Science sections in Chapters 1–10, and most or all of the
case-study Chapters 12–17.

The “Chapter Dependencies” section of this Preface will help instructors plan their syllabi
in the context of the book’s unique architecture.

Chapters 12–17 are loaded with cool, powerful, contemporary content. They present
hands-on implementation case studies on topics such as supervised machine learning, unsu-
pervised machine learning, deep learning, reinforcement learning (in the exercises), natural

2. Guo, Philip., “Python Is Now the Most Popular Introductory Teaching Language at Top U.S. Univer-
sities,” ACM, July 07, 2014, https://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-
the-most-popular-introductory-teaching-language-at-top-u-s-universities/fulltext.

3. https://www.oreilly.com/ideas/5-things-to-watch-in-python-in-2017.
4. https://www.kdnuggets.com/2017/08/python-overtakes-r-leader-analytics-data-

science.html.
5. https://www.r-bloggers.com/data-science-job-report-2017-r-passes-sas-but-python-

leaves-them-both-behind/.
6. https://www.oreilly.com/ideas/5-things-to-watch-in-python-in-2017.

 Audiences for the Book xxi

language processing, data mining Twitter, cognitive computing with IBM’s Watson, big
data and more. Along the way, you’ll acquire a broad literacy of data science terms and con-
cepts, ranging from briefly defining terms to using concepts in small, medium and large pro-
grams. Browsing the book’s detailed index will give you a sense of the breadth of coverage.

Audiences for the Book
The modular architecture makes this book appropriate for several audiences:

• All standard Python computer science and related majors. First and foremost, our
book is a solid contemporary Python CS 1 entry. The computing curriculum rec-
ommendations from the ACM/IEEE list five types of computing programs: Com-
puter Engineering, Computer Science, Information Systems, Information
Technology and Software Engineering.7 The book is appropriate for each of these.

• Undergraduate courses for data science majors—Our book is useful in many
data science courses. It follows the curriculum recommendations for integration
of all the key areas in all courses, as appropriate for intro courses. In the proposed
data science curriculum, the book can be the primary textbook for the first com-
puter science course or the first data science course, then be used as a Python ref-
erence throughout the upper curriculum.

• Service courses for students who are not computer science or data science majors.

• Graduate courses in data science—The book can be used as the primary text-
book in the first course, then as a Python reference in other graduate-level data
science courses.

• Two-year colleges—These schools will increasingly offer courses that prepare
students for data science programs in the four-year colleges—the book is an ap-
propriate option for that purpose.

• High schools—Just as they began teaching computer classes in response to strong
interest, many are already teaching Python programming and data science class-
es.8 According to a recent article on LinkedIn, “data science should be taught in
high school,” where the “curriculum should mirror the types of careers that our
children will go into, focused directly on where jobs and technology are going.”9

We believe that data science could soon become a popular college advanced-
placement course and that eventually there will be a data science AP exam.

• Professional industry training courses.

Key Features

KIS (Keep It Simple), KIS (Keep it Small), KIT (Keep it Topical)
• Keep it simple—In every aspect of the book and its instructor and student sup-

plements, we strive for simplicity and clarity. For example, when we present nat-

7. https://www.acm.org/education/curricula-recommendations.
8. http://datascience.la/introduction-to-data-science-for-high-school-students/.
9. https://www.linkedin.com/pulse/data-science-should-taught-high-school-rebecca-

croucher/.

xxii Preface

ural language processing, we use the simple and intuitive TextBlob library rather
than the more complex NLTK. In general, when multiple libraries could be used
to perform similar tasks, we use the simplest one.

• Keep it small—Most of the book’s 538 examples are small—often just a few lines
of code, with immediate interactive IPython feedback. We use large examples as
appropriate in approximately 40 larger scripts and complete case studies.

• Keep it topical—We read scores of recent Python-programming and data science
textbooks and professional books. In all we browsed, read or watched about
15,000 current articles, research papers, white papers, videos, blog posts, forum
posts and documentation pieces. This enabled us to “take the pulse” of the
Python, computer science, data science, AI, big data and cloud communities to
create 1566 up-to-the-minute examples, exercises and projects (EEPs).

IPython’s Immediate-Feedback, Explore, Discover and Experiment Pedagogy
• The ideal way to learn from this book is to read it and run the code examples in

parallel. Throughout the book, we use the IPython interpreter, which provides
a friendly, immediate-feedback, interactive mode for quickly exploring, discover-
ing and experimenting with Python and its extensive libraries.

• Most of the code is presented in small, interactive IPython sessions (which we
call IIs). For each code snippet you write, IPython immediately reads it, evaluates
it and prints the results. This instant feedback keeps your attention, boosts learn-
ing, facilitates rapid prototyping and speeds the software-development process.

• Our books always emphasize the live-code teaching approach, focusing on com-
plete, working programs with sample inputs and outputs. IPython’s “magic” is that
it turns snippets into live code that “comes alive” as you enter each line. This pro-
motes learning and encourages experimentation.

• IPython is a great way to learn the error messages associated with common errors.
We’ll intentionally make errors to show you what happens. When we say some-
thing is an error, try it to see what happens.

• We use this same immediate-feedback philosophy in the book’s 557 Self-Check
Exercises (ideal for “flipped classrooms”—we’ll soon say more about that phe-
nomenon) and many of the 471 end-of-chapter exercises and projects.

Python Programming Fundamentals
• First and foremost, this is an introductory Python textbook. We provide rich cov-

erage of Python and general programming fundamentals.

• We discuss Python’s programming models—procedural programming, func-
tional-style programming and object-oriented programming.

• We emphasize problem-solving and algorithm development.

• We use best practices to prepare students for industry.

• Functional-style programming is used throughout the book as appropriate. A
chart in Chapter 4 lists most of Python’s key functional-style programming capa-
bilities and the chapters in which we initially cover many of them.

 Key Features xxiii

538 Examples, and 471 Exercises and Projects (EEPs)
• Students use a hands-on applied approach to learn from a broad selection of real-

world examples, exercises and projects (EEPs) drawn from computer science,
data science and many other fields.

• The 538 examples range from individual code snippets to complete computer
science, data science, artificial intelligence and big data case studies.

• The 471 exercises and projects naturally extend the chapter examples. Each
chapter concludes with a substantial set of exercises covering a wide variety of
topics. This helps instructors tailor their courses to the unique requirements of
their audiences and to vary course assignments each semester.

• The EEPs give you an engaging, challenging and entertaining introduction to
Python programming, including hands-on AI, computer science and data science.

• Students attack exciting and entertaining challenges with AI, big data and cloud
technologies like natural language processing, data mining Twitter, machine
learning, deep learning, Hadoop, MapReduce, Spark, IBM Watson, key data sci-
ence libraries (NumPy, pandas, SciPy, NLTK, TextBlob, spaCy, BeautifulSoup,
Textatistic, Tweepy, Scikit-learn, Keras), key visualization libraries (Matplotlib,
Seaborn, Folium) and more.

• Our EEPs encourage you to think into the future. We had the following idea as we
wrote this Preface—although it’s not in the text, many similar thought-provoking
projects are: With deep learning, the Internet of Things and large numbers of TV
cameras trained on sporting events, it will become possible to keep automatic statis-
tics, review the details of every play and resolve instant-replay reviews immediately.
So, fans won’t have to endure the bad calls and delays common in today’s sporting
events. Here’s a thought—we can use these technologies to eliminate referees. Why
not? We’re increasingly entrusting our lives to other deep-learning-based technolo-
gies like robotic surgeons and self-driving cars!

• The project exercises encourage you to go deeper into what you’ve learned and
research technologies we have not covered. Projects are often larger in scope and
may require significant Internet research and implementation effort.

• In the instructor supplements, we provide solutions to many exercises, including
most in the core Python Chapters 1–11. Solutions are available only to instruc-
tors—see the section “Instructor Supplements on Pearson’s Instructor Resource
Center” later in this Preface for details. We do not provide solutions to the proj-
ect and research exercises.

• We encourage you to look at lots of demos and free open-source code examples
(available on sites such as GitHub) for inspiration on additional class projects, term
projects, directed-study projects, capstone-course projects and thesis research.

557 Self-Check Exercises and Answers
• Most sections end with an average of three Self-Check Exercises.

• Fill-in-the-blank, true/false and discussion Self Checks enable you to test your
understanding of the concepts you just studied.

xxiv Preface

• IPython interactive Self Checks give you a chance to try out and reinforce the
programming techniques you just learned.

• For rapid learning, answers immediately follow all Self-Check Exercises.

Avoid Heavy Math in Favor of English Explanations
• Data science topics can be highly mathematical. This book will be used in first com-

puter science and data science courses where students may not have deep mathe-
matical backgrounds, so we avoid heavy math, leaving it to upper-level courses.

• We capture the conceptual essence of the mathematics and put it to work in our
examples, exercises and projects. We do this by using Python libraries such as sta-
tistics, NumPy, SciPy, pandas and many others, which hide the mathematical
complexity. So, it’s straightforward for students to get many of the benefits of
mathematical techniques like linear regression without having to know the math-
ematics behind them. In the machine-learning and deep-learning examples, we
focus on creating objects that do the math for you “behind the scenes.” This is one
of the keys to object-based programming. It’s like driving a car safely to your des-
tination without knowing all the math, engineering and science that goes into
building engines, transmissions, power steering and anti-skid braking systems.

Visualizations
• 67 full-color static, dynamic, animated and interactive two-dimensional and

three-dimensional visualizations (charts, graphs, pictures, animations etc.) help
you understand concepts.

• We focus on high-level visualizations produced by Matplotlib, Seaborn, pandas
and Folium (for interactive maps).

• We use visualizations as a pedagogic tool. For example, we make the law of large
numbers “come alive” in a dynamic die-rolling simulation and bar chart. As the
number of rolls increases, you’ll see each face’s percentage of the total rolls grad-
ually approach 16.667% (1/6th) and the sizes of the bars representing the per-
centages equalize.

• You need to get to know your data. One way is simply to look at the raw data. For
even modest amounts of data, you could rapidly get lost in the detail. Visualiza-
tions are especially crucial in big data for data exploration and communicating
reproducible research results, where the data items can number in the millions,
billions or more. A common saying is that a picture is worth a thousand words10—
in big data, a visualization could be worth billions or more items in a database.

• Sometimes, you need to “fly 40,000 feet above the data” to see it “in the large.”
Descriptive statistics help but can be misleading. Anscombe’s quartet, which
you’ll investigate in the exercises, demonstrates through visualizations that sig-
nificantly different datasets can have nearly identical descriptive statistics.

• We show the visualization and animation code so you can implement your own.
We also provide the animations in source-code files and as Jupyter Notebooks, so

10. https://en.wikipedia.org/wiki/A_picture_is_worth_a_thousand_words.

 Key Features xxv

you can conveniently customize the code and animation parameters, re-execute the
animations and see the effects of the changes.

• Many exercises ask you to create your own visualizations.

Data Experiences
• The undergraduate data science curriculum proposal says “Data experiences

need to play a central role in all courses.”11

• In the book’s examples, exercises and projects (EEPs), you’ll work with many
real-world datasets and data sources. There’s a wide variety of free open datasets
available online for you to experiment with. Some of the sites we reference list
hundreds or thousands of datasets. We encourage you to explore these.

• We collected hundreds of syllabi, tracked down instructor dataset preferences
and researched the most popular datasets for supervised machine learning, unsu-
pervised machine learning and deep learning studies. Many of the libraries you’ll
use come bundled with popular datasets for experimentation.

• You’ll learn the steps required to obtain data and prepare it for analysis, analyze
that data using many techniques, tune your models and communicate your
results effectively, especially through visualization.

Thinking Like a Developer
• You’ll work with a developer focus, using such popular sites as GitHub and

StackOverflow, and doing lots of Internet research. Our Intro to Data Science
sections and case studies in Chapters 12–17 provide rich data experiences.

• GitHub is an excellent venue for finding open-source code to incorporate into
your projects (and to contribute your code to the open-source community). It’s
also a crucial element of the software developer’s arsenal with version control
tools that help teams of developers manage open-source (and private) projects.

• We encourage you to study developers’ code on sites like GitHub.

• To get ready for career work in computer science and data science, you’ll use an
extraordinary range of free and open-source Python and data science libraries,
free and open real-world datasets from government, industry and academia, and
free, free-trial and freemium offerings of software and cloud services.

Hands-On Cloud Computing
• Much of big data analytics occurs in the cloud, where it’s easy to scale dynamically

the amount of hardware and software your applications need. You’ll work with
various cloud-based services (some directly and some indirectly), including Twit-
ter, Google Translate, IBM Watson, Microsoft Azure, OpenMapQuest, geopy,
Dweet.io and PubNub. You’ll explore more in the exercises and projects.

• We encourage you to use free, free trial or freemium services from various cloud
vendors. We prefer those that don’t require a credit card because you don’t want

11. “Curriculum Guidelines for Undergraduate Programs in Data Science,” http://www.annualre-
views.org/doi/full/10.1146/annurev-statistics-060116-053930 (p. 18).

xxvi Preface

to risk accidentally running up big bills. If you decide to use a service that
requires a credit card, ensure that the tier you’re using for free will not auto-
matically jump to a paid tier.

Database, Big Data and Big Data Infrastructure
• According to IBM (Nov. 2016), 90% of the world’s data was created in the last

two years.12 Evidence indicates that the speed of data creation is accelerating.

• According to a March 2016 AnalyticsWeek article, within five years there will be
over 50 billion devices connected to the Internet and by 2020 we’ll be producing
1.7 megabytes of new data every second for every person on the planet!13

• We include an optional treatment of relational databases and SQL with SQLite.

• Databases are critical big data infrastructure for storing and manipulating the mas-
sive amounts of data you’ll process. Relational databases process structured data—
they’re not geared to the unstructured and semi-structured data in big data applica-
tions. So, as big data evolved, NoSQL and NewSQL databases were created to
handle such data efficiently. We include a NoSQL and NewSQL overview and a
hands-on case study with a MongoDB JSON document database.

• We include a solid treatment of big data hardware and software infrastructure in
Chapter 17, “Big Data: Hadoop, Spark, NoSQL and IoT (Internet of Things).”

Artificial Intelligence Case Studies
• Why doesn’t this book have an artificial intelligence chapter? After all, AI is on

the cover. In the case study Chapters 12–16, we present artificial intelligence
topics (a key intersection between computer science and data science), including
natural language processing, data mining Twitter to perform sentiment analy-
sis, cognitive computing with IBM Watson, supervised machine learning,
unsupervised machine learning, deep learning and reinforcement learning (in
the exercises). Chapter 17 presents the big data hardware and software infrastruc-
ture that enables computer scientists and data scientists to implement leading-
edge AI-based solutions.

Computer Science
• The Python fundamentals treatment in Chapters 1–10 will get you thinking like

a computer scientist. Chapter 11, “Computer Science Thinking: Recursion,
Searching, Sorting and Big O,” gives you a more advanced perspective—these are
classic computer science topics. Chapter 11 emphasizes performance issues.

Built-In Collections: Lists, Tuples, Sets, Dictionaries
• There’s little reason today for most application developers to build custom data

structures. This is a subject for CS2 courses—our scope is strictly CS1 and the
corresponding data science course(s). The book features a solid two-chapter

12. https://public.dhe.ibm.com/common/ssi/ecm/wr/en/wrl12345usen/watson-customer-

engagement-watson-marketing-wr-other-papers-and-reports-wrl12345usen-20170719.pdf.
13. https://analyticsweek.com/content/big-data-facts/.

 Key Features xxvii

treatment of Python’s built-in data structures—lists, tuples, dictionaries and
sets—with which most data-structuring tasks can be accomplished.

Array-Oriented Programming with NumPy Arrays and Pandas Series/DataFrames
• We take an innovative approach in this book by focusing on three key data struc-

tures from open-source libraries—NumPy arrays, pandas Series and pandas
DataFrames. These libraries are used extensively in data science, computer sci-
ence, artificial intelligence and big data. NumPy offers as much as two orders of
magnitude higher performance than built-in Python lists.

• We include in Chapter 7 a rich treatment of NumPy arrays. Many libraries, such
as pandas, are built on NumPy. The Intro to Data Science sections in Chapters
7–9 introduce pandas Series and DataFrames, which along with NumPy arrays
are then used throughout the remaining chapters.

File Processing and Serialization
• Chapter 9 presents text-file processing, then demonstrates how to serialize objects

using the popular JSON (JavaScript Object Notation) format. JSON is a com-
monly used data-interchange format that you’ll frequently see used in the data sci-
ence chapters—often with libraries that hide the JSON details for simplicity.

• Many data science libraries provide built-in file-processing capabilities for load-
ing datasets into your Python programs. In addition to plain text files, we process
files in the popular CSV (comma-separated values) format using the Python
Standard Library’s csv module and capabilities of the pandas data science library.

Object-Based Programming
• In all the Python code we studied during our research for this book, we rarely

encountered custom classes. These are common in the powerful libraries used by
Python programmers.

• We emphasize using the enormous number of valuable classes that the Python
open-source community has packaged into industry standard class libraries.
You’ll focus on knowing what libraries are out there, choosing the ones you’ll
need for your app, creating objects from existing classes (usually in one or two
lines of code) and making them “jump, dance and sing.” This is called object-
based programming—it enables you to build impressive applications concisely,
which is a significant part of Python’s appeal.

• With this approach, you’ll be able to use machine learning, deep learning, rein-
forcement learning (in the exercises) and other AI technologies to solve a wide
range of intriguing problems, including cognitive computing challenges like
speech recognition and computer vision. In the past, with just an introductory
programming course, you never would have been able to tackle such tasks.

Object-Oriented Programming
• For computer science students, developing custom classes is a crucial object-

oriented programming skill, along with inheritance, polymorphism and duck
typing. We discuss these in Chapter 10.

xxviii Preface

• The object-oriented programming treatment is modular, so instructors can pres-
ent basic or intermediate coverage.

• Chapter 10 includes a discussion of unit testing with doctest and a fun card-
shuffling-and-dealing simulation.

• The six data science, AI, big data and cloud chapters require only a few straight-
forward custom class definitions. Instructors who do not wish to cover Chapter
10 can have students simply mimic our class definitions.

Privacy
• In the exercises, you’ll research ever-stricter privacy laws such as HIPAA (Health

Insurance Portability and Accountability Act) in the United States and GDPR
(General Data Protection Regulation) for the European Union. A key aspect of
privacy is protecting users’ personally identifiable information (PII), and a key
challenge with big data is that it’s easy to cross-reference facts about individuals
among databases. We mention privacy issues in several places throughout the book.

Security
• Security is crucial to privacy. We deal with some Python-specific security issues.

• AI and big data present unique privacy, security and ethical challenges. In the ex-
ercises, students will research the OWASP Python Security Project (http://
www.pythonsecurity.org/), anomaly detection, blockchain (the technology be-
hind cryptocurrencies like BitCoin and Ethereum) and more.

Ethics
• Ethics conundrum: Suppose big data analytics with AI predicts that a person with

no criminal record has a significant chance of committing a serious crime. Should
that person be arrested? In the exercises, you’ll research this and other ethical
issues, including deep fakes (AI-generated images and videos that appear to be
real), bias in machine learning and CRISPR gene editing. Students also investigate
privacy and ethical issues surrounding AIs and intelligent assistants, such as IBM
Watson, Amazon Alexa, Apple Siri, Google Assistant and Microsoft Cortana.
For example, just recently, a judge ordered Amazon to turn over Alexa recordings
for use in a criminal case.14

Reproducibility
• In the sciences in general, and data science in particular, there’s a need to repro-

duce the results of experiments and studies, and to communicate those results
effectively. Jupyter Notebooks are a preferred means for doing this.

• We provide you with a Jupyter Notebooks experience to help meet the reproduc-
ibility recommendations of the data science undergraduate curriculum proposal.

• We discuss reproducibility throughout the book in the context of programming
techniques and software such as Jupyter Notebooks and Docker.

14. https://techcrunch.com/2018/11/14/amazon-echo-recordings-judge-murder-case/.

